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NOTE

On the Conditional Consistency of an Explicit Numerical Scheme

1. INTRODUCTION

In this paper we analyse an explicit scheme for the solution
of partial differential equations, recently presented in this Jour-
nal by Richardson, Ferrel, and Long [4]; these authors presented
the algorithm as an unconditionally siable explicit scheme for
solving non-linear fluid dynamics problems.

The present study, with application to the one-dimensional
diffusion equation, shows that the scheme is indeed uncondi-
tionally stable, but only conditionally consistent.

As a stmple example of this problem, it is enough to remem-
ber the unconditionally stable DuFort—Frankel discretization
[1] of the one-dimensional linear diffusion equation (parabolic),
which can become consistent with a hyperbolic equation if,
when Ar and Ax approach zero, the ratio At/Ax tends to a
greater-than-zero constant value,

Besides, for the scheme here analysed, since the modulus of
the amplification factor is almost constant for Ar larger than a
certain value, the convergence properties of the scheme do not
improve for large values of Ac.

Finally, if one tries to perform the integration with very high
time step values, perturbations can be introduced in the transient
phase because of the difference equation inconsistency; this is
shown by the numerical examples.

2. THE RICHARDSON-FERREL-LONG SCHEME

du v

oAt

with L a tridiagonal matrix operator whose ith row is
w1 =21
Equation (1} is formally solved by
u(r + Ay = explel)u(r)

with o = vAt/A X%

The approximation technique for the exponential function
determines the time integration method; for example, by using
the series definition of exp{al) and stopping the expansion at
the first order, we reach the classical Euler explicit scheme, or
by using the rational Padé’s approximation [5] for the exp
function, we get the well-known Crank—Nicholson (trapezoidal
rule) scheme and so on.

The method under discussion has its basis on the decomposi-
tion of the L matrix tnto a sum of two block diagonal matrices
where each block can be easily exponentiated (that is, calling
A the generic block, the exact expression of exp(A) can easily
be written), So, we can write

L=1L,+ L,
In the following section we recall the scheme developed by
Richardson ef al, [2-4], which is an explicit finite difference here
scheme, second-order accurate in space (central discretization);
it has, in the actual formulation, a first-order time accuracy. r-| | 0 -
Let us consider the one-dimensicnal linear diffusion equation
(v is a positive constant) - 0
L= 0 -1 :
au o u
— (. H=vr—(x, 1. 1 1 -1
o D= v (1 ‘
| - _
By using a second-order spatial discretization we get its _ o 0 0 -
space discretized form {x;, = /Ax and Ax is the grid size)
-1 1
d — -
Ebf = _A% (t-) — 20+ 1) Ly= l : 0
0o o -
or, in vector form | .
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Let us remember that if ¥ and Z are two non-commutative
matrices, the product exp(Y) exp(Z) is not exactly equal to
exp(¥Y + Z) [6], but we can write

explal} = expl(al,} + (al,)] = explal.) explal,) + N a?)
so that a first-order time step operator follows
T = exp(eel,) explal,)
and the updating of the u vector is carried out by the relation
ut™h = Ty,

The next problem is to express the exponential of the follow-

A [£4
1 1

which is repeated, identically, in the L, and L, matrices.
From the series definition for the matrix exponential function

An

exp(A) = I + 2 o

observing that

we get

. (o
exp(A)=l-E£T(!x)A.

n=1

By using again the exponential function series definition for
each element of the matrix exp{A4), we find

1 - e‘z“] |:el ez}
1+ 6720‘ a g £ !
where 2¢, = | + e ®and 2e, = | — e,

By applying the exp(al.,) semi-operator to 1™, we obtain

1+

1 _ €—2u

|
exp(d) =3 [

lexp(ﬁ’La)“(”)]i = e:Djus_ + ey + e Pty = i, (2)

where D, and P; are two operators defined as

DE NICOLA, PINTO, AND TOGNACCINI

L=y L=l
D=—F 5 P=r—

Then, by applying the semi-operator exp(eeL,) to & we get

lexplaLl) i), = e, Pl + eyl + e, Dl = ul™b, (3)

By means of the two previous half steps, it is possible to carry
out a single time step.

3. CONDITIONAL CONSISTENCY

The first main requirement of a practically usable scheme is
consistency (the difference operator approaches the differential -
operator when the mesh size tends to zero).

For the validity of the factorization of the exp{aL) function
(Section 2) a must obviously be small vAs <2 Ax2. We show
in this section that consistency requires an even more restrictive
condition on At (in the following we shall assume that
v = 1). To verify this property, the modified equation method
1] is used.

The discrete updating equation is

uMY = 3 Pal™ + ejeul® + elu + ejeul) + elDiulh,

obtained by the substitation of (2) in (3); by writing the Taylor
series expansion in time and space around the u{” value, we get

A

M+M,AI’+M,,§+"‘

2 3
=il [u —w2Ax + u, (22!)() = Uy (2?13() + - ]

[ 2 Ax?
+ e u—uxAx-F—unézT——um?Tﬁ-i-“-]

L : ’ 4)
+ ¢lu

] Axt Ay
+ e u+uxAx+u“7+um—3r+---]

2 3

+ e3D; [u + w28 x + u, (231}[) Uy (ng) + . .:|,

where, for simplicity, subscript i and superscript 7 in 4 and in
the derivatives were dropped.

The functions e3, €3, and e, were expanded by the usual
Taylor expression:

€1 =& — 2a’ + O

el=1-2a+3a?— 26£a3 + Ola*) (5}

16

ce,=oa— 2o+ o o’ + Ola*).



CONSISTENCY OF AN EXPLICIT SCHEME

By the substitution of (5} in {4), we obtain, after some algebra,
the expression for the modified equation,

_ Ax 4 Ax?
u— vun:(4a3+2a2)u1'§*§a3u,x§
(6)
8 % Ayt
+[(Flat+al 22 4.
(+6C¥ 3(1).[4Hx At R

where the first or the second sign is to be assumed respectively
for even or odd i.

The right-hand side term in (6) represents the truncation error
(let us note that the highest time derivative term wu, At/2 is
missing in it); consistency of the finite difference equation with
(1) can be asserted if this tends to zero for Ax and At both
vanishing, which does not happen for an arbitrary vanishing
process. In fact, by analysing the coefficients of (6) it is not
difficult to realize that they vanish (for Ax and Ar — 0) only if

. Ar
m A O Xy
A0

In other words, in order to let the truncation error reduce to
zero when Ax and Ar tend to zero, it is necessary that Ar
converges much faster than Ax; in these cases we have condi-
tional consistency,

To save the transient consistency it would be necessary to
keep, in such a scheme, At/Ax® very small: i.e,, givenk < 1, then

Ar=kAx
or, in terms of a,

a=kAx (8)

This relation establishes, in practical applications, a very
strict limit for @, much more than in the ordinary explicit
scheme (if Ax = 0.01, &« = O(Ax) instead of the classical
a = 0.5).

Furthermore, by setting u™*" to #™ in (6) and by analysing
the resulting truncation error, we note that consistency of the
steady solution is not even guaranteed if (7) is disregarded.

4. NUMERICAL EXAMPLES

As claimed in [2, 4], the Richardson ef al. discretization of
the linear one-dimensional diffusion equation is unconditionally
stable: the modulus of the amplification factor (obtained by
means of the von Neumann stability analysis) is less than unity
in the whole disturbance frequency range, for any value of the

381
.27 a=0.1
Fmi
=
o
&
=
c 038
=
Q2
=
=
E
<

=3
.

o
[=]
=SS A R DI U T B 2 T T U E I T A VA N N .~ A |

6 a5 10 153 20 25 30 35
frequency

FI1G. 1. Modulus of the amplification factor for the Richardson scheme.

ratio ev. Actually, as one can realize by looking at Fig. 1 (taken
from the analysis in [4]), the amplification factor curves do not
change any more when « is greater than about three.

On the other hand, when @ reaches such high values the
scheme suffers because of the inconsistency property shown
in Section 3, so that the practical possibility of integrating the
diffusion equation with arbitrarily high time steps was not
found.

In Figs. 2 a-d we show some comparisons between the
Richardson solution and the exact solution for the diffusion
equation [5] with the usual homogeneous Dirichlet boundary
conditions and f(x) = sin{wx) as the initial function; several
values of the a parameter are tested with Ax = 0.01 and x €
(0, 1). The solutions are presented after 50 iterations and show
that, even for inoderate value of ¢, the computed solution differs
from the exact solution owing to a high-frequency disturbance
and a slower decay rate for the low frequencies. Nevertheless,
there is no way to get an instability for any frequency range.

5. CONCLUSIONS

We have analysed a scheme for the solution of finite differ-
ence equations recently proposed, placing special emphasis on
the consistency analysis. The property of the scheme to be
unconditionally stable has been verified for the simple one-
dimensional diffusion model problem. This would be a very
interesting feature for an explicit scheme making it extremely
attractive for the solution of steady problems by means of a
pseudo-lransient iterative algorithm.

Nevertheless our analysis proved that, in order to ensure
numerical consistency, a constraint on the time step even
stronger than the stability limit of the classical explicit integra-
tion is required. This drawback has been confirmed by numeri-
cal experiments.
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FIG. 2. Comparison between Richardson and exact solutions for the 1D diffusion model equation after 50 iterations (Ax = 0.G1).
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